

Q

GROUPING MATERIALS, MACHINERY, AND MEN:

CREATING THE MOST EFFICIENT LOGISTICS FOR THE CONSTRUCTION INDUSTRY

READ THE STORY: <u>CLICK HERE</u>
READ THE WHITE PAPER: CLICK HERE

Read the story: click here	
Read the white paper: click here	1
THE STORY	
	3
The Construction Challenge	4
The Material Flow: From Source to Site	5
The Roles in the Chain	6
The Price Problem	7
A Digital Solution: The Aggregating Platform	8
Benefits for Each Stakeholder	9
The Wholesaler Dilemma	10
The Way Forward: Construction Hubs and Shared Logistics	11
The Platform: The Q-Platform	12
Conclusion	13
THE WHITE PAPER	14
Executive summary	15
1. Introduction and problem statement	16
2. Evidence & European context (selected statistics)	17
3. Why current logistics models fail construction	18
4. Vision: A consolidated, platform-led logistics ecosystem	19
5. Benefits — quantified and qualitative	20
6. Implementation roadmap — phased approach	21
7. Policy & regulatory considerations	22
8. Risks & mitigation	23
9. Next steps (short checklist)	24
10. Conclusion	25
Appendix A — Key references (select)	26
Appendices: Key European / Dutch Statistics at a Glance	27

THE STORY

3

THE CONSTRUCTION CHALLENGE

The construction industry is one of the most complex logistical systems in existence. Every building project — from a single-family home to a large-scale urban development — relies on a continuous, coordinated flow of materials, machinery, and manpower. Each of these elements has its own rhythm, its own supply chain, and its own cost structure. Yet, they all converge at one place: the construction site.

Q

© 2025 QONNECTED LOGISTICS

The effectiveness of this convergence determines whether a project stays on schedule, within budget, and to the required quality standards. But today, the sector struggles with inefficiencies that lead to higher costs, wasted resources, and lost time.

When we talk about building the "most ideal logistics chain," we refer to one that ensures minimum waste, maximum efficiency, and seamless coordination. Unfortunately, the current system is far from that ideal. The flow of goods, equipment, and people is still fragmented — driven more by tradition and legacy processes than by data and efficiency.

To understand how to fix it, we must first look at the three main logistical streams and identify where they fail to align.

THE MATERIAL FLOW: FROM SOURCE TO SITE

At the heart of construction logistics lies the material flow — the movement of everything from raw materials to finished products. This journey begins at the mines, forests, and factories that produce steel, wood, cement, insulation, and countless other products. From there, materials are transported, stored, handled, and distributed across multiple layers before reaching the building site.

Q

However, this process is rarely straightforward. Materials often take long detours through multiple warehouses, intermediaries, and handling points before arriving at their final destination. Every transfer adds cost, time, and inefficiency.

On one side of this chain, manufacturers operate on a "push" model — they produce as much as their facilities can handle, aiming for economies of scale. Their production is optimized for output, not for synchronized demand. On the other side, construction companies operate on a "pull" model — they order materials only when specific project phases require them, depending on weather, workforce, and project progress.

The result is a fundamental imbalance. The manufacturer's need for steady production does not match the builder's fluctuating demand. This disconnect creates the need for stockpiling and buffers. Warehouses fill up during slow demand periods, then run dry during peak construction seasons. Trucks often leave manufacturing sites half-empty or return completely empty after delivery.

In fact, across Europe, the average truck utilisation in the construction sector is only about 60% - meaning that nearly half of all potential transport capacity is wasted. At the same time, warehouses oscillate between being overcrowded or half-empty, depending on the stage of ongoing projects.

- Construction logistics suffer from a mismatch between production "push" and demand "pull."
- Low truck utilisation and inconsistent warehousing lead to high costs and wasted capacity.
- Inefficient movement and handling inflate total project costs and increase emissions.

THE ROLES IN THE CHAIN

Looking closer at the logistics chain, we see a series of traditional players — manufacturers, importers, traders, and wholesalers — each historically designed to fill gaps in an older economy. In the past, wholesalers were essential: they bridged distance, broke down bulk quantities, and distributed materials to smaller customers within regional markets.

Q

But the world has changed. Digital systems and advanced transport networks have made it possible for manufacturers to deliver directly to any buyer, in any quantity, anywhere. Yet, the traditional structure remains — adding layers of cost and complexity without adding equivalent value.

In an ideal, modernized chain, the role of intermediaries would shrink or disappear entirely. Manufacturers could align production directly with market demand, reducing waste and storage costs. They could sell and ship materials in response to real-time orders, supported by intelligent logistics systems that ensure timely delivery — without relying on outdated distribution hierarchies.

- Historical intermediaries like wholesalers and traders add cost but little value today.
- Technology enables direct supply from manufacturers to builders.
- Demand-driven production and delivery could eliminate unnecessary storage and handling.

THE PRICE PROBLEM

Price formation in the construction industry is more complex than it seems. While the **production cost** of materials is determined by raw inputs and manufacturing efficiency, the **final purchase price** paid by contractors and builders is often inflated by multiple intermediary markups.

Q

Today, logistics alone account for **more than 15% of a building's total cost**. But that's only part of the story. Each intermediary — importer, trader, wholesaler — adds its own margin. Between the manufacturer's selling price and what the end buyer ultimately pays, total markups can exceed **50%**.

If manufacturers could sell directly to construction firms and end users, much of that margin could be eliminated. Prices would drop significantly, manufacturers could earn healthier profits, and builders could achieve better cost control on their projects.

However, such a shift challenges the existing balance of power. The question becomes: who "owns" the client? Large construction companies, with their purchasing power, already buy directly from manufacturers. But smaller firms and subcontractors must still buy through wholesalers, who maintain control over availability, credit, and delivery — keeping smaller players locked into an inefficient system.

- Logistics and intermediary markups add 50% or more to material prices.
- Manufacturers and end users could both benefit from direct trade.
- Market control and client ownership prevent natural correction of inefficiencies.

A DIGITAL SOLUTION: THE AGGREGATING **PLATFORM**

The modern answer lies in digital transformation. By reorganizing logistics through aggregating platforms, we can connect every player in the chain — manufacturers, carriers, and end users — into one transparent, data-driven ecosystem.

Q

© 2025 QONNECTED LOGISTICS

An aggregation platform functions as a central hub. It collects orders from many buyers, groups them intelligently, and matches them with available suppliers and carriers. It's not just a marketplace — it's a logistics brain that ensures every movement, from factory to site, is optimized for efficiency, timing, and cost.

Think of how other industries were transformed:

- **Uber** revolutionized personal transport by connecting drivers and passengers in real time.
- Amazon turned retail into an on-demand ecosystem of sellers, buyers, and logistics.
- Airbnb reorganized accommodation supply and demand without owning any property.

In construction, a similar revolution is possible. By connecting all parties digitally, logistics can finally be demand-driven, with no empty trucks, no idle warehouses, and no excess intermediaries.

- Aggregation platforms optimise fragmented markets by connecting supply and demand.
- They consolidate orders, transport, and storage into one efficient flow.
- The construction sector can achieve the same transformation seen in retail and mobility.

BENEFITS FOR EACH STAKEHOLDER

For Manufacturers:

They gain predictability and flexibility. By connecting their ERP systems to the platform, manufacturers receive aggregated, forecasted demand from hundreds of projects. They can produce exactly what's needed, when it's needed, and ship full truckloads to strategic hubs. No more overproduction or heavy stock financing.

Q

For Carriers:

Transport companies gain access to a continuous flow of shipments from multiple manufacturers. Instead of negotiating individual contracts with low margins, they can plan full truckloads, combine routes, and even backfill empty returns. Their operating efficiency rises sharply, and their environmental impact drops.

For End Users:

9

Builders and subcontractors benefit the most. They can order materials directly, track deliveries in real time, and have everything delivered exactly where it's needed — even to specific building floors. Their crews spend less time handling logistics and more time building.

- Manufacturers enjoy stable demand and reduced storage costs.
- Carriers gain full-capacity utilisation and better margins.
- End users save time, reduce costs, and increase on-site productivity.

© 2025 QONNECTED LOGISTICS

THE WHOLESALER DILEMMA

Wholesalers, once the backbone of the material chain, now face a crisis. They merged and expanded to gain scale and negotiate better purchasing terms. Yet, their core challenge — rising logistics costs and shrinking delivery volumes — persists.

Q

As clients demand smaller and faster deliveries, wholesalers must deliver more frequently, often at no additional charge. Their margins erode further due to emission-free zone regulations, congestion charges, and rising driver costs. What was once an advantage — proximity to the customer — is now a liability without shared logistics infrastructure.

- Wholesalers' model is strained by small orders and high delivery expectations.
- Market consolidation has not solved their logistics inefficiencies.
- Without transformation, they risk becoming redundant intermediaries.

THE WAY FORWARD: CONSTRUCTION HUBS AND SHARED LOGISTICS

Q

A new structure is emerging — one built on shared logistics networks and Construction ${f Hubs}$.

These hubs act as decentralized warehouses at the edge of cities or near major building areas. Manufacturers ship consolidated full truckloads to these hubs, where materials are temporarily stored, sorted, and dispatched for **last-mile delivery** by smaller, often electric, vehicles.

This system drastically reduces congestion, emissions, and costs. Carriers can specialise: long-haul transport for large loads to hubs, and urban micro-logistics for short-range, emission-free deliveries. The Construction Hubs also host shared machinery, tools, and even skilled labor pools — allowing projects to operate leaner and more flexibly.

- Construction Hubs consolidate transport, storage, and manpower.
- Full truckloads cut emissions and lower logistics costs.
- Shared infrastructure creates sustainable, scalable logistics.

© 2025 QONNECTED LOGISTICS

THE PLATFORM: THE Q-PLATFORM

The **Q-Platform** is the digital infrastructure that makes this entire ecosystem possible. It integrates all actors — manufacturers, carriers, and construction firms — into a single operational framework.

Q

Manufacturers can plug in their production systems directly, gaining real-time visibility into orders, delivery schedules, and site needs. Carriers connect through a **load board**, finding optimal routes and backloads instantly. Construction firms can manage all their logistics, inventory, and workforce needs in one dashboard.

The platform doesn't dictate what to buy or from whom — it simply **optimises how everything moves**. It ensures transparency, competition, and efficiency at every stage.

- Q-Platform unites all logistics stakeholders into one data-driven network.
- Every movement materials, machines, and men is optimised for efficiency.
- No monopolies, no intermediaries just a transparent, efficient ecosystem.

CONCLUSION

The construction industry is entering a new era — one defined by **data, integration, and shared logistics**. The inefficiencies that once seemed inevitable can now be solved by technology and collaboration.

Q

By grouping **materials, machinery, and men** into one digital framework, we unlock a new level of productivity and sustainability. Logistics costs fall, emissions drop, and every truck, warehouse, and worker is used to their full potential.

This is not a distant vision — it's a practical path already proven in other industries. With platforms like Q-Platform, construction can finally build its own future — smarter, faster, and more sustainable than ever before.

- Logistics inefficiencies currently add over 15% to building costs.
- Aggregating platforms and shared hubs align production, transport, and demand.
- The result: lower prices, cleaner logistics, and a stronger, more efficient construction ecosystem.

Q THE WHITE PAPER AND STORY © 2025 QONNECTED LOGISTICS

THE WHITE PAPER AND STORY

© 2025 QONNECTED LOGISTICS

THE WHITE PAPER

Grouping Materials, Machinery & Men:

A WHITE PAPER ON REORGANISING CONSTRUCTION LOGISTICS **IN EUROPE**

Q

Authors: Oonnected One BV

Date: October 2025 (Europe / Amsterdam timezone)

Version: 1.0

EXECUTIVE SUMMARY

Construction projects are held back by logistics inefficiencies that add significant cost, waste time, and increase emissions. Logistics currently account for roughly 10-15% of the final value of products in the EU — and construction faces additional pressures from fragmented supply chains, high intermediary margins, urban congestion, and truck-driver shortages. A digital aggregation platform coupled with regional Construction Hubs can reduce these inefficiencies by consolidating flows (materials, machinery, manpower), enabling manufacturers to ship full loads, carriers to operate at higher utilisation, and construction sites to receive just-in-time deliveries tailored to project schedules.

Key numeric takeaways:

- Logistics typically represent 10–15% of final product value in the EU. (Mobility and
- Truck-driver shortages in Europe are acute (IRU and industry reports show very large unfilled positions, with recent estimates in the hundreds of thousands). (Transport **Intelligence**)
- Delivery drivers spend roughly 60–62% of route time parked/stopped for last-mile activity — a major inefficiency for urban deliveries. (SpringerLink)
- Construction-related transport represents a material share of urban freight flows (several studies estimate 15–30% of urban freight movement is construction-related). (JPI Urban Europe)
- Materials often represent 30–40% of overall construction costs (so logistics savings multiply across the project). (EconStor)

1. INTRODUCTION AND PROBLEM STATEMENT

The construction industry's outputs depend on three interlinked resources: materials. machinery, and men. Their coordinated arrival and use on site determine schedule reliability and cost. Current logistics patterns - characterized by push-style manufacturing, fragmented distribution, suboptimal truck utilization, and city congestion - generate avoidable cost and carbon.

Q

Problems that repeatedly surface:

- Unbalanced push/pull dynamics: manufacturers produce to keep factories efficient; builders order to suit project timing → inventory buffers and wasted movements.
- Overheads from intermediaries: multiple margins and touchpoints (importers, traders, wholesalers) increase final user prices and complicate logistics.
- Low vehicle and warehouse utilisation: empty return legs, partially loaded trucks and uneven warehouse occupancy.
- Urban last-mile inefficiencies: high parked/handling time and congestion. (SpringerLink)
- Labour shortages & decarbonisation pressures: rising regulatory requirements for emissions-free zones combined with a shrinking driver base. (Transport Intelligence)

2. EVIDENCE & EUROPEAN CONTEXT (SELECTED STATISTICS)

Q

This white paper grounds its recommendations in recent European evidence and sector studies:

- Logistics cost share EU stakeholders estimate logistics account for about 10–15% of the final product value; many observers believe up to half of this could be saved with fewer structural obstacles. (Mobility and Transport)
- Construction material cost & weight research indicates material costs are a major share of overall construction costs (commonly cited 30-40% in academic/industry studies), meaning logistics improvements can have a significant impact on final project costs. (EconStor)
- Urban delivery inefficiency last-mile studies show drivers can spend ~62\% of their route time parked (walking, handling, waiting), which is a major drain on driver productivity and increases unit delivery costs. This is particularly relevant for city deliveries to construction sites. (SpringerLink)
- Construction share of urban freight construction-related transport is a meaningful component of city freight flows; estimates indicate 15-30% of freight activity in urban areas relates to construction, underscoring the leverage potential of construction-focused logistics optimisation. (JPI Urban Europe)
- Driver shortage industry and IRU reporting shows Europe faces a substantial shortage of truck drivers (recent industry reporting cites hundreds of thousands of unfilled positions), increasing labour costs and threatening service reliability. (Transport Intelligence)
- Rising construction costs macro studies note construction costs in Europe rose significantly in recent years (e.g., 2015–2023 increases and inflationary pressures), compounding the need for logistics efficiency to contain total project costs. (McKinsey & Company)

(Full bibliography and links are in the Appendix.)

3. WHY CURRENT LOGISTICS MODELS FAIL CONSTRUCTION

• Scale mismatch: manufacturers design production for scale; builders require phase-based, small-lot deliveries. This mismatch creates buffer stock, extra handling and higher warehousing needs.

Q

- Fragmentation & intermediaries: wholesalers and traders fill historical distribution roles but add cost and extra movements; digital platforms can replace many of these services.
- **Inefficient routing & load planning**: average utilization figures show major headroom for consolidation (empty return legs, partial loads).
- Urban constraints & emissions rules: city delivery delays (parking, handling)
 and emission-zone rules drive up last-mile costs and complexity; electrification
 of fleets is expensive and requires time and infrastructure. (Reuters)
- Human-resource constraints: driver shortages and skilled-labour shortages in construction increase costs and reduce flexibility. (<u>Transport Intelligence</u>)

4. VISION: A CONSOLIDATED, PLATFORM-LED LOGISTICS ECOSYSTEM

Goal: remove redundant intermediaries and reorganise logistics so that materials, machinery, and manpower flow into projects efficiently, predictably and sustainably.

Q

Core elements:

- Aggregation platform (Q-Platform) digital hub that aggregates orders, standardises product data (e.g., BIM/IB metadata), provides demand forecasts to manufacturers, and plans consolidated shipments for carriers.
- 2. Construction Hubs strategically located consolidation/processing nodes at city peripheries: receive full-truckloads, store and stage materials, host micro-logistics (electric vehicles) for last mile, and provide shared equipment and labour pooling.
- Integrated TMS & Loadboard carriers connect via TMS/Loadboard to find backloads and full-truck opportunities; platform supports spot and contracted flows and dynamic rerouting.
- **4.** ERP + BIM integration manufacturers and contractors connect production & project planning to logistics for just-in-time consumption.
- **5.** Transparent costing & CO₂ reporting platform delivers per-delivery cost and carbon metrics to all parties for compliance and optimisation.

5. BENEFITS — QUANTIFIED AND QUALITATIVE

Q

© 2025 QONNECTED LOGISTICS

Systemic benefits (illustrative):

- Transport utilization gains: moving from 60% to higher utilization through aggregation can reduce tonne-km costs proportionally and cut empty trips. (Case studies and pilot projects in construction logistics indicate cost reductions of 10–20% at hub & aggregation levels.) (afry.com)
- **Lower logistics share of final product**: with fewer intermediaries, variable logistics costs and warehousing shrink — freeing up to significant portions of the current 10–15% logistics share. (Mobility and Transport)
- Reduced urban congestion & emissions: hubs + electric last-mile micro-fleets cut inner-city diesel vehicle numbers and parked time per delivery (addressing the ~62% parked-time inefficiency). (SpringerLink)
- **Resilience & workforce leverage**: pooling and renting drivers or machinery through the platform addresses short-term manpower gaps and reduces the fixed-cost burden of carriers. (Transport Intelligence)

Stakeholder-specific highlights:

- Manufacturers: produce to aggregated demand, ship full-loads, reduce stock
- Carriers: smoother planning, better margins from full truckloads and backloads, fewer empty return trips.
- Wholesalers/resellers: can transition into hub operators or value-added service providers (assembly, cut-to-size, credit services) rather than disappearing.
- End-users (contractors/subcontractors): lower purchase prices, fewer on-site handling tasks, improved schedule certainty.

6. IMPLEMENTATION ROADMAP — PHASED **APPROACH**

Phase $0 - \sqrt{}$ Feasibility & coalition building (0–6 months)

Stakeholder convening: manufacturers, wholesalers, carriers, city authorities, large contractors.

Q

- Regulatory scan: emission zone rules, liability frameworks, procurement rules.
- Pilot site selection (1–3 regional pilot corridors).

Phase 1 − ✓ Platform & hub pilot (3 months left)

- Build MVP O-Platform (order aggregation, loadboard, basic ERP integration).
- Launch 1–2 Construction Hubs near major urban centres.
- Run pilot with 3–5 manufacturers and 2–3 carriers.
- KPI set: utilization rates, delivery time variance, CO₂ per delivery, cost per pallet.

Phase 2 — Scale & integrate (18 months)

- Add BIM/IB integration, advanced routing, dynamic pricing models, and TMS connectors.
- Onboard more manufacturers and construction firms.
- Expand hub network and micro-logistics fleets (electric vehicles).
- Engage public procurement to prefer aggregated logistics (city incentives).

Phase 3 — European network & policy embedding (36 months)

- Cross-border optimisation and shared hub networks across regions.
- Standardisation of product metadata and CO₂ reporting.
- Policy alignment across EU member states for shared infrastructure financing.

7. POLICY & REGULATORY CONSIDERATIONS

- Data sharing & privacy: standard agreements for ERP/BIM access, anonymised forecasting, and competitive safeguards so manufacturers don't lose client-ownership fears.
- Public procurement levers: cities and governments should pilot procurement rules that prioritise centralized logistics (e.g., mandates for hub deliveries to inner cities).
- Incentives for electrification: targeted subsidies to make last-mile e-trucks and charging infrastructure commercially viable while aggregation reduces the immediate need to electrify long-haul fleets. (Reuters)
- Labour & training: workforce programmes to increase driver pipeline and upskill logistics personnel; consider cross-border driver mobility facilitation.

8. RISKS & MITIGATION

Risk: Manufacturer resistance (fear of losing clients).

Mitigation: contractual protections, anonymised demand signals, and value propositions (lower logistics cost, variable logistics expense, higher margins).

Q

Risk: Platform market power concerns.

Mitigation: governance model with multi-stakeholder board, transparent pricing algorithms, non-exclusive access for carriers.

Risk: CapEx for Hubs & micro-fleet electrification.

Mitigation: blended finance — EU/state grants + private investment; phased electrification (hubs reduce immediate pressure).

Risk: Data integration complexity.

Mitigation: use phased, standard-based integrations (open APIs, standard IB/BIM datasets).

9. NEXT STEPS (SHORT CHECKLIST)

1. Convene a cross-sector steering group (manufacturers, carriers, wholesalers, major contractors, city authority).

Q

© 2025 QONNECTED LOGISTICS

- 2. Commission a 6-month feasibility study and select 1–2 pilot corridors (example: Rotterdam + Amsterdam corridor; Oxford UK corridor).
- 3. We Build the Q-Platform MVP and sign 3 anchor manufacturers and 2 carriers for a hub pilot.
- 4. Apply for EU regional or innovation grants to co-finance initial Construction Hub(s).
- 5. Define KPI dashboard and monitoring framework (utilization, CO₂ per tonne, delivery lead times, cost per pallet).

10. CONCLUSION

Reorganising logistics for the construction sector is both necessary and achievable. The combination of a digital aggregation platform and a distributed network of Construction Hubs can unlock substantial cost savings, reduce emissions, and make the sector more resilient against labour shortages and regulatory shifts. Europe already has the policy frameworks and technological building blocks - what's needed is a coordinated, well-funded, and politically supported rollout to realise the efficiencies at scale.

Q

APPENDIX A — KEY REFERENCES (SELECT)

European Commission — Logistics and multimodal transport (stakeholder estimate: logistics ≈10–15% of final product value). (Mobility and Transport)

Q

- IRU & industry reports Europe truck driver shortages (recent reporting identifies hundreds of thousands of unfilled positions; age, recruitment and retention issues). (Transport Intelligence)
- Dalla Chiara et al., "The role of walking in last-mile urban deliveries" / related studies parked time ≈62% of route time for urban deliveries. (SpringerLink)
- CIVIC project / JPI Urban Europe construction accounts for a significant share (15–30%) of urban freight movement in city studies. (JPI Urban Europe)
- Academic/industry literature materials typically account for 30–40% of construction costs. (EconStor)
- AFRY / McKinsey / construction logistics pilots evidence of 10–20% cost reductions via logistics consolidation & CCC/Construction Hub models. (afry.com)
- WEF / Transforming Urban Logistics (2024) urban delivery emissions trends and importance of consolidation centres. (World Economic Forum Reports)

APPENDICES: KEY EUROPEAN / DUTCH STATISTICS AT A GLANCE

Q

Statistic	Value	Source
Logistics cost as % of final product value (EU)	~10-15%	(Mobility and Transport)
Materials/products share of construction cost (various countries)	~30-50%	(The Centre For Sustainable Road Freight)
Warehouse storage cost in Netherlands (per pallet/week)	~€0.46-€2.10 (block pallet)	(TRANSPORTSCANNER)
Labour cost index y/y for Dutch construction	~6.70% (March	(Trading Economics)
Cost overrun average Dutch infrastructure	~16.5%	(arXiv)

Metric	Value (Netherlands)	Source
Logistics cost component in the construction sector ~11.97% of	A study found that for Dutch construction the logistics-cost component was 11.97% of	
Transport-based share of construction logistics cost: 43% transport, 25% storage, 21% inventory, 11% planning	Same TNO study: Of the logistic cost component, approx 43% is transport, 25% storage, etc.	
Economic value of "bouwlogistiek" (construction logistics) in NL $\sim $ 6.1 billion , around 11% of the total	"Economische waarde bouwlogistiek is 6,1 miljard euro: 11% totale bouwsector" (managementsite.nl)	(manageme ntsite.nl)
Average logistics cost within a building project ~ 12% of total	A FAQ from TiQiT: "gemiddeld bedragen de kosten van logistiek binnen een bouwproject	(tiqit.nl)
Potential savings from improved logistics: 1%-5% of total construction value; CO ₂ emissions and transport	Research by TNO/Platform Logistiek in de Bouw: "besparingspotentieel orde grootte 1% tot 5% van de totale bouwsom	
Cost increase in Dutch road transport sector: 3.6%-5.1% expected cost	From Panteia report: "Kosten wegtransport stijgen met 3,6 tot 5,1% in 2025" (Vanoers.nl)	(<u>Vanoers.nl</u>)
Average transport cost per truck- kilometer in NL: $\sim \in 0.50 - \in 2.50$	From Brenger blog: "gemiddelde transportkosten per kilometer in Nederland	(Brenger)